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Abstract

By applying the general dynamic aperture formulae for
the multipoles in a storage ring developed in ref. [1] (J.
Gao,Nucl. Instr. and Methods A451 (2000), p. 545), in
this paper, we give the analytical formulae for the dynamic
apertures limited by the wigglers in storage rings.

INTRODUCTION

Wigller as an insertion device finds many applications in
damping rings [2], synchrotron radiation facilities [3] [4],
and storage ring colliders [5]. Intrinsically, as a nonlinear
device, together with the perturbations to the linear optics
it brings additional limitations to the general performance
of the machines, such as reducing dynamic apertures. In
this paper, we will estimate in an analytical way the dy-
namic apertures limited by wigglers. Firstly, in section 2,
we make a brief review of the beam dynamics inside a wig-
gler, and secondly, in sections 3 a wiggler is inserted into
a storage ring as a perturbation. By applying the general
dynamic aperture formulae of multipoles in a storage ring
developed in ref. [1], in section 4 we derived analytical for-
mulae of the wiggler limited dynamic aperture. Finally, in
section 5 some numerical examples will be given.

PARTICLE’S MOTION INSIDE A
WIGGLER

Considering a wiggler of sinusoidal magnetic field vari-
ation, one can express the wiggler’s magnetic fields, which
satisfies Maxwell equations, as follows:

Bx =
kx

ky
B0 sinh(kxx) sinh(kyy)cos(ks) (1)

By = B0 cosh(kxx) cosh(kyy)cos(ks) (2)

Bz = − k

ky
B0 cosh(kxx) sinh(kyy) sin(ks) (3)
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k2
x + k2

y = k2 =
(

2π

λw

)2

(4)

whereB0 is the peak sinusoidal wiggler magnetic field,λw

is the period length of the wiggler, andx, y, s represent
horizontal, vertical, and beam moving directions, respec-
tively.

The Hamiltonian describing particle’s motion can be
written as [3]:

Hw =
1
2

(
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)

(5)

where
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1
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ρwk

(7)

andρw is the radius of curvature of the wiggler peak mag-
netic fieldB0, andρw = E0/ecB0 with E0 being the elec-
tron energy. After making a canonical transformation to
betatron variables, averaging the Hamiltonian over one pe-
riod of wiggler, and expanding the hyperbolic functions to
the fourth order inx andy, one gets:
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(8)

After averaging the motion over one wiggler period, one
obtains the differential equations for particle’s transverse
motions [6]:
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Considering the wigglers are built with plane poles, one has
kx = 0.

WIGGLER AS AN INSERTION DEVICE IN
A STORAGE RING

Now we insert a “wiggler” of only one period (or one
cell) into a storage ring located atsw. The total Hamilto-
nian of the ring in the vertical plane can be expressed as
follows:

H = H0 +
1

4ρ2
y2 +

k2
y

12ρ2
y4λw

∞∑
i=−∞

δ(s − iL) (11)

whereH0 is the Hamiltonian without the inserted wiggler,
L is the circumference of the ring, andky = k. It is obvious
that the perturbation is a delta function octupole.

Now, let’s recall some useful results obtained in ref. [1]
where we have studied analytically the one dimensional dy-
namic aperture of a storage ring described by the following
Hamiltonian:

H =
p2

2
+

K(s)
2
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3!Bρ

∂2Bz

∂x2
x3L

∞∑
k=−∞

δ(s − kL)



+
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∂x3
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∞∑
k=−∞

δ(s − kL) + · · · (12)

where

Bz = B0(1+xb1 +x2b2 +x3b3 + · · ·+xm−1bm−1 + · · ·)
(13)

The dynamic aperture corresponding to each multipole is
given as:

Adyna,2m,x(s) =
√

2βx(s)
(

1
mβm

x (s2m)

) 1
2(m−2)

×
(

ρ

|bm−1|L

)1/(m−2)

(14)

wheres2m is the location of the2mth multipole,βx(s) is
the beta function inx plane, andx here stands for either
horizontal or vertical plane.

Comparing eq. 11 with eq. 12, by analogy, one finds
easily that:

b3

ρ
L =

k2
yλw

3ρ2
w

(15)

and the dynamic aperture limited by this one period “wig-
gler”:
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(
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w
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yλw
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(16)

whereβy(s) is the unperturbed beta function. In fact, a
wiggler is an insertion device which is composed of a large
number of cells, say,Nw, and the wiggler lengthLw =
Nwλw. Now, the first question which follows is what the
combined effect of theseNw cells will be. According to
ref. [1], one has:
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where the indexi indicates different cell. WhenNw is a
large number, Eq. 17 can be simplified as:
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y(s)ds (18)

wheresw0 correspond to the center of the wiggler. If the
variation of the unperturbed beta function inside the wig-
gler is approximated as linear, one gets

ANw,y(s) = 3

√
βy(s)(βy,2 − βy,1)

β3
y,2 − β3

y,1

ρw

ky

√
Lw

(19)

whereβy,1 andβy,2 correspond to the beta function values
at the two extremities of the wiggler. As is well known, the
inserted wiggler perturbs linear optics also, such as tune
shifts and beta functions. In our specific case [7], we have
∆νx = 0, ∆βx = 0, and

∆νy ≈ Lwβav,y

8πρ2
w

(20)

∆βy

βy
≈ −Lwβav,y cos(2νy(π − |φ − φw|))

4ρ2
w sin(2πνy)

(21)

or (
∆βy

βy

)
max

≈ |2π∆νy/ sin(2πνy)| (22)

whereβav,y is the averaged beta function within the wig-
gler. The fact that the tune shift and the beta function insite
the wiggler vary in a complex way makes us assume that
the octupole like cells of the wiggler areindependent from
one to another, and permits us to arrive at the expression in
eq. 17.

The second question which follows is how about the total
dynamic aperture of the storage ring including many wig-
glers and other nonlinear components. Assuming that the
dynamic aperture of the ring without the wigglers’ effects
isAy and that there areM wigglers to be inserted inside the
ring at different places, one has the total dynamic aperture
expressed as:

Atotal,y(s) =
1√

1
Ay(s)2 +

∑M
j=1

1
Aj,w,y(s)2

(23)

whereAj,w,y denotes the dynamic aperture limited by the
jth wiggler.

NUMERICAL EXAMPLE

Now we take TESLA damping ring for example with
permanent magnet wigglers [2], where one hasE0 =
5GeV, B0 = 1.68T, λw = 0.4m, Nw = 12, βy,1 = 9m,
βy,2 = 15m, and total wiggler numberM = 45. Without
considering the dynamic aperture limited by other nonlin-
ear components, by applying eqs. 19 and 23, one finds that
Atotal,y(sw0) = 21mm. Recalling the gap of the wiggler
[2], g = 25mm. It should be noted that eqs. 19 and 23 cor-
respond to ideal wigglers. If the octupole components of
a real wiggler is measured to be a factor of “g” larger than
that of the ideal wiggler, the values of the dynamic aper-
tures of real wigglers should be those evaluated by eqs. 19
and 23 divided by

√
g.

CONCLUSION

In this paper we have developed the analytical dynamic
aperture formulae limited by wigglers in storage rings,
which are very efficient and powerful in designing and op-
erating damping rings and synchrotron radiation facilities.
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